Value of information in the earth sciences : (Record no. 9908)

MARC details
000 -LEADER
fixed length control field 07306cam a22003738i 4500
001 - CONTROL NUMBER
control field 18649784
003 - CONTROL NUMBER IDENTIFIER
control field OSt
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20170228160709.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 150608s2015 enk b 001 0 eng
010 ## - LIBRARY OF CONGRESS CONTROL NUMBER
LC control number 2015022572
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9781107040267 (hbk.)
040 ## - CATALOGING SOURCE
Original cataloging agency Indian Institute for Human Settlements-Bangalore
Language of cataloging eng
Transcribing agency DLC
Description conventions rda
Modifying agency IIHS
042 ## - AUTHENTICATION CODE
Authentication code pcc
082 00 - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 550.01156 EID
Edition number 23
Item number 009925
100 1# - MAIN ENTRY--PERSONAL NAME
Personal name Eidsvik, Jo.
245 10 - TITLE STATEMENT
Title Value of information in the earth sciences :
Remainder of title integrating spatial modeling and decision analysis /
Statement of responsibility, etc Jo Eidsvik, Tapan Mukerji, and Debarun Bhattacharjya.
264 #1 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE
Place of production, publication, distribution, manufacture Cambridge :
Name of producer, publisher, distributor, manufacturer Cambridge University Press,
Date of production, publication, distribution, manufacture, or copyright notice 2015.
300 ## - PHYSICAL DESCRIPTION
Extent xiii, 385 pages :
Other physical details illustrations (black and white) ;
Dimensions 26 cm
336 ## - Content type term (R)
Content type term (R) text
Source (NR) rdacontent
337 ## - Media Type (R)
Media type term (R) unmediated
Source (NR) rdamedia
338 ## - Carrier Type (R)
Carrier type term (R) volume
Source (NR) rdacarrier
504 ## - BIBLIOGRAPHY, ETC. NOTE
Bibliography, etc Includes bibliographical references and index.
505 ## - FORMATTED CONTENTS NOTE
Formatted contents note Machine generated contents note: 1.Introduction<br/>1.1.What is the value of information?<br/>1.2.Motivating examples from the Earth sciences<br/>1.3.Contributions of this book<br/>1.4.Organization<br/>1.5.Intended audience and prerequisites<br/>1.6.Bibliographic notes<br/>2.Statistical models and methods<br/>2.1.Uncertainty quantification, information gathering, and data examples<br/>2.2.Notation and probability models<br/>2.2.1.Univariate probability distributions<br/>2.2.2.Multivariate probability distributions<br/>2.3.Conditional probability, graphical models, and Bayes' rule<br/>2.3.1.Conditional probability<br/>2.3.2.Graphical models<br/>2.3.3.Bayesian updating from data<br/>2.3.4.Examples<br/>2.4.Inference of model parameters<br/>2.4.1.Maximum likelihood estimation<br/>2.4.2.Examples<br/>2.5.Monte Carlo methods and other approximation techniques<br/>2.5.1.Analysis by simulation<br/>2.5.2.Solving integrals<br/>2.5.3.Sampling methods<br/>2.5.4.Example<br/>2.6.Bibliographic notes<br/>Contents note continued: 3.Decision analysis<br/>3.1.Background<br/>3.2.Decision situations: terminology and notation<br/>3.2.1.Decisions, uncertainties, and values<br/>3.2.2.Utilities and certain equivalent<br/>3.2.3.Maximizing expected utility<br/>3.2.4.Examples<br/>3.3.Graphical models<br/>3.3.1.Decision trees<br/>3.3.2.Influence diagrams<br/>3.3.3.Examples<br/>3.4.Value of information<br/>3.4.1.Definition<br/>3.4.2.Perfect versus imperfect information<br/>3.4.3.Relevant, material, and economic information<br/>3.4.4.Examples<br/>3.5.Bibliographic notes<br/>4.Spatial modeling<br/>4.1.Goals of stochastic modeling of spatial processes<br/>4.2.Random fields, variograms, and covariance<br/>4.3.Prediction and simulation<br/>4.3.1.Spatial prediction and Kriging<br/>4.3.2.Common geostatistical stochastic simulation methods<br/>4.4.Gaussian models<br/>4.4.1.The spatial regression model<br/>4.4.2.Optimal spatial prediction: Kriging<br/>4.4.3.Multivariate hierarchical spatial regression model<br/>4.4.4.Examples<br/>Contents note continued: 4.5.Non-Gaussian response models and hierarchical spatial models<br/>4.5.1.Skew-normal models<br/>4.5.2.Spatial generalized linear models<br/>4.5.3.Example<br/>4.6.Categorical spatial models<br/>4.6.1.Indicator random variables<br/>4.6.2.Truncated Gaussian and pluri-Gaussian models<br/>4.6.3.Categorical Markov random field models<br/>4.6.4.Example<br/>4.7.Multiple-point geostatistics<br/>4.7.1.Algorithms<br/>4.7.2.Example<br/>4.8.Bibliographic notes<br/>5.Value of information in spatial decision situations<br/>5.1.Introduction<br/>5.1.1.Spatial decision situations<br/>5.1.2.Information gathering in spatial decision situations<br/>5.1.3.Overview of models<br/>5.2.Value of information: a formulation for static models<br/>5.2.1.Prior value<br/>5.2.2.Posterior value<br/>5.2.3.Special cases: an overview<br/>5.3.Special case: low decision flexibility and decoupled value<br/>5.3.1.Prior value<br/>5.3.2.Posterior value<br/>5.3.3.Computational notes<br/>5.3.4.Example<br/>Contents note continued: 5.4.Special case: high decision flexibility and decoupled value<br/>5.4.1.Prior value<br/>5.4.2.Posterior value<br/>5.4.3.Computational notes<br/>5.4.4.Examples<br/>5.5.Special case: low decision flexibility and coupled value<br/>5.5.1.Prior value<br/>5.5.2.Posterior value<br/>5.5.3.Computational notes<br/>5.5.4.Example<br/>5.6.Special case: high decision flexibility and coupled value<br/>5.6.1.Prior value<br/>5.6.2.Posterior value<br/>5.6.3.Computational notes<br/>5.6.4.Example<br/>5.7.More complex decision situations<br/>5.7.1.Generalized risk preferences<br/>5.7.2.Additional constraints<br/>5.7.3.Sequential decision situations<br/>5.8.Sequential information gathering<br/>5.9.Other information measures<br/>5.9.1.Entropy<br/>5.9.2.Prediction variance<br/>5.9.3.Prediction error<br/>5.10.Bibliographic notes<br/>6.Earth sciences applications<br/>6.1.Workflow<br/>6.2.Exploration of petroleum prospects<br/>6.2.1.Gotta get myself connected: Bayesian network example<br/>Contents note continued: 6.2.2.Basin street blues: basin modeling example<br/>6.2.3.Risky business: petroleum prospect risking example<br/>6.3.Reservoir characterization from geophysical data<br/>6.3.1.Black gold in a white plight: reservior characterization example<br/>6.3.2.Reservoir dogs: seismic and electromagnetic data example<br/>6.4.Mine planning and safety<br/>6.4.1.I love rock and ore: mining oxide grade example<br/>6.4.2.We will rock you: rock hazard example<br/>6.5.Groundwater management<br/>6.5.1.Salt water wells in my eyes: groundwater management example<br/>6.6.Bibliographic notes<br/>7.Problems and projects<br/>7.1.Problem and tutorial hands-on projects<br/>7.1.1.Problem sets<br/>7.1.2.Hands-on projects<br/>7.2.Hands on: exploration of petroleum prospects<br/>7.2.1.Gotta get myself connected: Bayesian network example<br/>7.2.2.Basin street blues: basin modeling example<br/>7.2.3.Risky business: petroleum prospect risking example<br/>Contents note continued: 7.3.Hands on: reservoir characterization from geophysical data<br/>7.3.1.Black gold in a white plight: reservoir characterization example<br/>7.3.2.Reservoir dogs: seismic and electromagnetic data example<br/>7.4.Hands on: mine planning and safety<br/>7.4.1.I love rock and ore: mining oxide grade example<br/>7.4.2.We will rock you: rock hazard example<br/>7.5.Hands on: groundwater management<br/>7.5.1.Part I: salt water wells in my eyes<br/>groundwater monitoring in Netica<br/>7.5.2.Part II: salt water wells in my eyes<br/>groundwater monitoring in BNT<br/>Appendix: selected statistical models and sampling methods<br/>Appendix A.1 Gaussian distribution<br/>A.1.1.Definition and properties<br/>A.1.2.Decision analysis and VOI results<br/>Appendix A.2 Generalized linear models<br/>A.2.1.Definition and properties<br/>A.2.2.Decision analysis and VOI results<br/>Appendix A.3 Markov chains and hidden Markov models<br/>A.3.1.Definition and properties<br/>Contents note continued: A.3.2.Decision analysis and VOI results<br/>Appendix A.4 Categorical Markov random fields<br/>A.4.1.Definition and properties<br/>A.4.2.Decision analysis and VOI results<br/>Appendix A.5 Discrete graphs and Bayesian networks<br/>A.5.1.Definition and properties<br/>A.5.2.Decision analysis and VOI results<br/>Appendix B Sampling methods.
520 ## - SUMMARY, ETC.
Summary, etc Presents a unified framework for assessing the value of potential data gathering schemes, with a focus on the Earth sciences.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Earth sciences
General subdivision Information services.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Geochemical prospecting.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Communication in science.
700 1# - ADDED ENTRY--PERSONAL NAME
Personal name Mukerji, Tapan.
700 1# - ADDED ENTRY--PERSONAL NAME
Personal name Bhattacharjya, Debarun.
856 42 - ELECTRONIC LOCATION AND ACCESS
Materials specified Table of contents
Uniform Resource Identifier <a href="http://www.openisbn.com/isbn/1107040264/">http://www.openisbn.com/isbn/1107040264/</a>
906 ## - LOCAL DATA ELEMENT F, LDF (RLIN)
a 7
b cbc
c orignew
d 1
e ecip
f 20
g y-gencatlg
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Source of classification or shelving scheme Dewey Decimal Classification
Koha item type Book
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Damaged status Not for loan Home library Current library Date acquired Source of acquisition Cost, normal purchase price Total Checkouts Full call number Barcode Date last seen Date checked out Cost, replacement price Price effective from Koha item type
    Dewey Decimal Classification     Indian Institute for Human Settlements, Bangalore Indian Institute for Human Settlements, Bangalore 27/02/2017 Allied/CR2037/27-02-2017 5878.38 1 550.01156 EID 009925 009925 28/11/2019 15/11/2019 5945.87 27/02/2017 Book